Supporting Information

Noonindoles G-L: Indole terpene glycosides from the Australian marine-

derived fungus Aspergillus noonimiae CMB-M0339

Sarani Kankanamge, † Zeinab G. Khalil, † Thulasi Sritharan† and Robert J. Capon†*

[†]Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072,

Australia

*Corresponding author: r.capon@uq.edu.au

List of contents

1	Phy	logenetic tree	8				
2	MATRIX cultivation of CMB-M0339						
3	Spe	ectroscopic characterization of metabolites G–L (7–12)	13				
	3.1	Noonindole G (7)	13				
	3.2	Noonindole H (8)					
	3.3	Noonindole I (9)	23				
	3.4	Noonindole J (10)	28				
	3.5	Noonindole K (11)					
	3.6	Noonindole L (12)					
4	Gra	in based MATRIX	43				
5	Bio	logical screening	47				
6	References						

List of figures

Figure S1.ITS gene sequence of CMB-M0339	6
Figure S2. NCBI-BLAST search of 18S rRNA sequence of CMB-M0339	6
Figure S3. Blast search (closet match) for CMB-M0339	7
Figure S4. Phylogenetic tree	8
Figure S5. CMB-M0339 cultivated on M1 agar	9
Figure S6. CMB-M0339 cultivated under MATRIX conditions	9
Figure S7. UPLC-DAD chromatograms of MATRIX extracts of CMB-M03	3910
Figure S8. Isolation scheme of noonindoles $G - L$ (7–12) from CMB-M033	9
Figure S9. ¹ H NMR (600 MHz, methanol- d_4) spectrum of noonindole G (7)	14
Figure S10. ¹³ C NMR (150 MHz, methanol- d_4) spectrum of noonindole G (7)14
Figure S11. HSOC (methanol- d_4) spectrum of noonindole G (7)	
Figure S12. COSY (methanol- d_4) spectrum of noonindole G (7)	
Figure S13. HMBC (methanol- d_4) spectrum of noonindole G (7)	
Figure S14 ROESY (methanol- d_4) spectrum of noonindole G (7)	16
Figure S15 HRMS spectrum of noonindole G (7)	
Figure S16 ¹ H NMR (600 MHz methanol- d_i) spectrum of noonindole H (8	s) 19
Figure S17 13 C NMR (150 MHz methanol- d_4) spectrum of noonindole H (6	8) 19
Figure S18 HSOC (methanol- d_i) spectrum of noonindole H (8)	20
Figure S19 COSY (methanol- d_i) spectrum of noonindole H (8)	20
Figure S20 HMBC (methanol- d_4) spectrum of noonindole H (8)	21
Figure S21 ROFSY (methanol- d_1) spectrum of noonindole H (8)	21
Figure S22 HRMS spectrum of noonindole H (8)	
Figure S22. HNNB (600 MHz methanol- d_1) spectrum of noonindole I (0)	24
Figure S24 13 C NMR (150 MHz, methanol- <i>d</i> ₄) spectrum of noonindole I (9)	24
Figure S25. HSOC (methanol- d_i) spectrum of noonindole I (9)	25
Figure S26. COSV (methanol- d_i) spectrum of noonindole I (9)	25
Figure S27. HMBC (methanol- d_4) spectrum of noonindole I (9)	
Figure S28 ROFSV (methanol- d_1) spectrum of noonindole I (9)	
Figure S29. HRMS spectrum of noonindole I (9)	
Figure S20 ¹ H NMR (600 MHz methanol- d_1) spectrum of noonindole I (10	20 20
Figure S30. If NNR (000 NHz, methanol- d_4) spectrum of noonindole J (1) Figure S31 ¹³ C NMR (150 MHz, methanol- d_4) spectrum of noonindole J (1)	() 29
Figure S32 HSOC (methanol- d_i) spectrum of noonindole I (10)	30
Figure S32. (10) (methanol- d_1) spectrum of noonindole J (10)	30
Figure S34. HMBC (methanol d_t) spectrum of noonindole J (10)	
Figure S34. Invide (incluation- u_4) spectrum of noonindole J (10)	
Figure S26. HDMS spectrum of noonindolo L (10)	
Figure S30. TRANS spectrum of noonindole $J(10)$	
Figure S38 13 C NMR (150 MHz, methanol d.) spectrum of noonindole K (1	11) 3 <i>1</i>
Figure S30. C (With (150 Witz, incluator- u_4) spectrum of noonindole K (11)	11)
Figure S39. In SQC (incluation- a_4) spectrum of noonindole K (11)	
Figure S40. COS I (incluanoi- <i>a</i> 4) spectrum of noonindole K (11)	
Figure S42 POESV (methanol d.) spectrum of noonindole K (11)	
Figure S42. ROES I (incluanoi- u_4) spectrum of noonindole K (11)	
Figure S43. In NMS spectrum of noonindole K (11)) 20
Figure S44. If NMR (000 MHz, methanol d) spectrum of noonindole L (1 Figure S45 ¹³ C NMR (150 MHz, methanol d) spectrum of noonindole L (1	(2)
Figure 545. C INVIR (150 IVIEZ, Incunation-04) spectrum of noonindole L (.	1 <i>4</i>]
Figure S47, COSV (methanol d.) spectrum of noonindolo L (12)	
Figure S48, UMPC (methanol d.) spectrum of noonindole L (12)	
Figure 546. Environmentation (4) spectrum of noomindole L (12)	
Figure 549. ROE51 (inemanoi- a_4) spectrum of noonindole L (12)	

igure S50. HRMS spectrum of noonindole L (12)42
igure S51. CMB-M0339 growing in grain MATRIX43
igure S52. UPLC-DAD chromatograms of MATRIX extracts of CMB-M0339 cultivated in
rain MATRIX45
igure S54. GNPS molecular network of CMB-M0339 cultivated in D400 agar supplemented
ith D-mannose45
igure S55. GNPS molecular network of CMB-M0339 cultivated in D400 agar supplemented
ith D-glucosamine
igure S56.Single ion extraction of CMB-M0339 fresh crude extract46
igure S57. Antimicrobial activity of metabolites 7–1247
igure S58. Cytotoxicity of metabolites 7–1247

List of tables

Table S1. Composition of media used for cultivation profiling	11
Table S2. 1D and 2D NMR (in methanol- d_4) data for noonindole G (7)	13
Table S3. 1D and 2D NMR (in methanol- d_4) data for noonindole H (8)	18
Table S4. 1D and 2D NMR (in methanol- d_4) data for noonindole I (9)	23
Table S5. 1D and 2D NMR (in methanol- d_4) data for noonindole J (10)	28
Table S6. 1D and 2D NMR (in methanol- d_4) data for noonindole K (11)	33
Table S7. 1D and 2D NMR (in methanol- d_4) data for noonindole L (12)	38
Table S8. Composition of media used for grain-based MATRIX	44

Figure S1.ITS gene sequence of CMB-M0339

Desc	riptions	Graphic Summary	Alignments	Taxonomy									
Sequ	iences pro	oducing significant a		Download `	/	Selec	t colu	nns ~	Show	v 1	00 💙 🔞		
s s	elect all 0	sequences selected				<u>GenBank</u>	Gra	<u>ohics</u>	<u>Dista</u>	nce tre	e of resu	<u>ilts</u>	MSA Viewer
			Description			Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
As	pergillus nooni	miae CBS 143382 ITS region;	from TYPE material			Aspergillus nooni	845	845	98%	0.0	92.50%	712	NR_156329.1
As	pergillus nooni	miae isolate GL.10.1.2 small s	ubunit ribosomal RNA	<u>gene, partial sequenc</u>	ce; internal transcribed	Aspergillus nooni	815	815	94%	0.0	92.41%	623	<u>OM732485.1</u>
As	pergillus kerati	tidis culture DAOMC:251739 s	strain KAS:8116 18S ril	<u>oosomal RNA gene, p</u>	partial sequence; intern	Aspergillus kerati	808	808	100%	0.0	90.92%	713	KY980633.1
As	pergillus kerati	tidis isolate F29_ITS5 internal	transcribed spacer 1,	partial sequence; 5.85	S ribosomal RNA gene	Aspergillus kerati	808	808	100%	0.0	90.82%	637	<u>MW187754.1</u>
As	pergillus nooni	miae isolate SA.3.1 internal tra	anscribed spacer 1, pa	rtial sequence; 5.8S r	ibosomal RNA gene an	Aspergillus nooni	802	802	100%	0.0	90.66%	622	<u>OM242948.1</u>
As	pergillus kerati	tidis culture DAOMC:251750 s	strain KAS:7927 18S ri	<u>posomal RNA gene, p</u>	partial sequence; intern	Aspergillus kerati	800	800	100%	0.0	90.66%	717	KY980626.1
As	pergillus sclero	otialis isolate GL.14.2.1 small s	ubunit ribosomal RNA	<u>gene, partial sequenc</u>	ce; internal transcribed	Aspergillus scler	798	798	99%	0.0	90.63%	649	<u>OM491163.1</u>
As	pergillus kerati	tidis culture DAOMC:251748 s	strain KAS:8117 18S ril	oosomal RNA gene, p	partial sequence; intern	Aspergillus kerati	797	797	100%	0.0	90.21%	737	<u>KY980634.1</u>
As	pergillus kerati	tidis culture DAOMC:251738 s	strain KAS:8109 18S ri	<u>posomal RNA gene, p</u>	partial sequence; intern	Aspergillus kerati	797	797	100%	0.0	90.51%	718	KY980627.1
As	pergillus kerati	tidis culture DAOMC:251747 s	train KAS:8114 18S ril	<u>oosomal RNA gene, p</u>	partial sequence; intern	Aspergillus kerati	789	789	100%	0.0	90.32%	716	KY980632.1
As	pergillus kerati	tidis culture DAOMC:251745 s	train KAS:8112 18S ril	<u>oosomal RNA gene, p</u>	partial sequence; intern	Aspergillus kerati	789	789	100%	0.0	90.32%	716	KY980630.1
As	pergillus wayn	elawii CBS 143384 ITS region	; from TYPE material			Aspergillus wayn	787	787	99%	0.0	90.48%	720	NR_156328.1
As	pergillus kerati	tidis culture DAOMC:251740 s	train KAS:8119 18S ril	<u>oosomal RNA gene, p</u>	partial sequence; intern	Aspergillus kerati	787	787	100%	0.0	89.91%	738	KY980636.1
As	pergillus kerati	tidis culture DAOMC:251743 s	train KAS:8110 18S ril	<u>oosomal RNA gene, p</u>	partial sequence; intern	Aspergillus kerati	787	787	100%	0.0	89.89%	738	KY980628.1
As	pergillus kerati	tidis culture BCRC:34221 strai	in DTO:198-E8 18S rib	osomal RNA gene, pa	artial sequence; internal	Aspergillus kerati	787	787	100%	0.0	90.22%	720	KY980616.1
As	pergillus kerati	tidis strain FONAATOO-18-3 ir	nternal transcribed spa	cer 1, partial sequence	ce; 5.8S ribosomal RNA	Aspergillus kerati	782	782	96%	0.0	90.97%	591	MZ447972.1
Sa	ig <u>enomella ker</u>	atitidis strain UZ597_17 small	subunit ribosomal RN/	gene, partial sequen	nce; internal transcribed	Aspergillus kerati	776	776	97%	0.0	90.46%	645	MF417472.1

Figure S2. NCBI-BLAST search of ITS sequence of CMB-M0339

Aspergillus noonimiae CBS 143382 ITS region; from TYPE material Sequence ID: <u>NR 156329.1</u> Length: 712 Number of Matches: 1 See 1 more title(s) × See all Identical Proteins(IPG)

Range :	L: 52 to	642 GenBank G	raphics		Vext Match	Previous Match
Score 845 bit	s(457)	Expect 0.0	Identities 555/600(93%)	Gaps 15/600(2%)	Strand Plus/Plus	-
Query	13	GGTGCCAACCTCC	CATCCTTGTCTATTGI	TACCGTCGTTGCTTCGGC	GGGCCCGTTCCTC	72
Sbjct	52	GGTGCCAACCTCC	CATCCGTGTCTATTG-	TACCTTCGTTGCTTCGGC	GGGCCCGTTTCTC	110
Query	73	CTCCCCCGGG	-GGGAGGGCCGTCGGG	GGGCATTCGCCCCCGGGC	GAGCGCCCGCCGG	128
Sbjct	111	CTTCCCCCCCGGG	AAGGAGGGCCGTCGGG	GGGCAGCTGCCCCGGGC	GTGTGCCCGCCGG	170
Query	129	AGACCCCAACACG	AACTCTGAGTGAAAGA	CTGTCGTCTGAGTGGGC	TTT-TGAATCAGT	187
Sbjct	171	AGACCCCAACACG	AACTCTGTCTGAAAGA	CTGTCGTCTGAGTGGGT	TTTATAAATCATT	230
Query	188	TAAAACTTTCAAC	AACGGATCTCTTGGT1	CCGGCATCGATGAAGAAC	GCAGCGAACTGCG	247
Sbjct	231	TAAAACTTTCAAC	AACGGATCTCTTGGT1	CCGGCATCGATGAAGAAG	GCAGCGAACTGCG	290
Query	248	ATAAGTAATGTGA	ATTGCAGAATTCAGTC	AATCATCGAGTCTTTGA	CGCATATTGCGCC	307
Sbjct	291	ATAAGTAATGTGA	ATTGCAGAATTCAGTC	GAATCATCGAGTCTTTGA	CGCATATTGCGCC	350
Query	308	CCCTGGTATTCCG	GGGGGCATGCCTGTCC	GAGCGTCATTGCTACCC	CAAGCACGGCTTG	367
Sbjct	351	CCCTGGTATTCCG	GGGGGCATGCCTGTCC	GAGCGTCATTGCTACCCI	CAAGCACGGCTTG	410
Query	368	TGTGTTGGGTCGG	CGTCCCCGGGGAGT-C	CCCGGGGGACGGGCCCGA	AGGCAGCGGCGGC	426
Sbjct	411	TGTGTTGGGTCGG	CGTCCCTGGGGCTCCC	CCCGGGGGACGGGCCCGA	AGGCAGCGGCGGC	470
Query	427	ACCGCGTCCTGGT	CCTCGAGCGTATGGGG	CTCTGTCACCCGCTCTG	GGGGCCGGCCGGC	486
Sbjct	471	ACCGCGTCCTGGT	CCTCGAGCGTATGGGG	GCTCTGTCACCCGCTCGG	GGGGCCGGCCGGC	530
Query	487	GCCTTTGGCCAAC	CTGTTTATGGGCCCTT	CCGGGGGGACCGAAACACC	AttttttCTCAG	546
Sbjct	531	GCCTTTGGCCATT	ATTTTTTCTGGTCTI	CTGGGATCGAAAAAC-	-TTC-TTTCTTAG	583
Query	547	GTTGACCTCGGAT	CAGGTAGGGATACCCG	CTGAACTTAAGCATATCA	ATAAGGCGGAGGA	606
Sbjct	584	GTTGACCTCGGAT	CAGGTAGGGATACCCG	CTGAACTTAAGCATATC	ATAAG-CGGAGGA	642

Aspergillus noonimiae CBS 143382 ITS region; from TYPE material

NCBI Reference Sequence: NR_156329.1

FASTA Graphics

<u>Go to:</u> 🖂

LOCUS	NR_156329 712 bp DNA linear PLN 27-JUN-2018
DEFINITION	Aspergillus noonimiae CBS 143382 ITS region; from TYPE material.
ACCESSION	NR_156329
VERSION	NR_156329.1
DBLINK	BioProject: PRJNA177353
KEYWORDS	RefSeq.
SOURCE	Aspergillus noonimiae
ORGANISM	Aspergillus noonimiae
	Eukaryota; Fungi; Dikarya; Ascomycota; Pezizomycotina;
	Eurotiomycetes; Eurotiomycetidae; Eurotiales; Aspergillaceae;
	Aspergillus; Aspergillus subgen. Polypaecilum.
REFERENCE	1 (bases 1 to 712)
AUTHORS	Tanney, J.B., Visagie, C.M., Yilmaz, N. and Seifert, K.A.
TITLE	Aspergillus subgenus Polypaecilum from the built environment
JOURNAL	Stud. Mycol. 88, 237-267 (2018)
REFERENCE	2 (bases 1 to 712)
CONSRTM	NCBI RefSeq Targeted Loci Project
TITLE	Direct Submission
JOURNAL	Submitted (01-MAY-2018) National Center for Biotechnology
	Information, NIH, Bethesda, MD 20894, USA
REFERENCE	3 (bases 1 to 712)
AUTHORS	Tanney, J.B., Visagie, C.M., Yilmaz, N. and Seifert, K.A.
TITLE	Direct Submission
JOURNAL	Submitted (21-APR-2017) Biodiversity (Mycology), Agriculture and
	Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A0C6,
	Canada

Figure S3. Blast search (closet match) for CMB-M0339

1 Phylogenetic tree

Phylogenetic tree obtained by PhyML Maximum Likelihood analysis was constructed using the top similar ITS sequences displayed after BLAST on Refseq RNA NCBI database using CMB-M0339 ITS as queries. The JC69 model was used to infer phylogeny sequences¹. Sequences alignments were produced with the MUSCLE program². Phylogenetic tree was constructed using the UGENE program using the aforementioned models and visualized using Ugene's tree view³.

Figure S4. Phylogenetic tree by PhyML Maximum Likehood analysis of ITS sequences showing the relationship of CMB-M0339 among selected reference strains (RefSeq GenBank) with the accession numbers

Figure S5. CMB-M0339 cultivated on M1 agar (supplemented with 3.3% artificial sea salt)

2 MATRIX cultivation of CMB-M0339

CMB-M0339 was cultivated in 24-well MBR plate (×11) including solid, broth shaking and static to generate 33 different cultivation media composition / conditions. The fungal spores from M1 agar plate were transformed using a sterile loop to inoculate MBR deep well plate (containing 1.5 mL broth or 2.0 mL agar). M1 media served as negative controls. MBR cultures were incubated at 190 rpm at 27 °C (broth shaking), at 30 °C (broth static and solid) for 10-14 days with continuous monitoring for fungal growth.

The culture (×33) per strain were extracted *in situ* with EtOAc (2 mL per well) followed by filtration or centrifugation at 13,000 rpm for 3 min and dried under N₂ at 40 °C to yield 33 crude extracts. The extracts were dissolved in 30 μ L of MeOH with calibrant (50 ng/mL) to generate 0.1 mg/ mL. An aliquot (10 μ L) of crude extract was analysed with UHPLC-DAD, UHPLC-QTOF and HPLC-DAD-ESIMS.

Figure S6. CMB-M0339 cultivated under MATRIX conditions. (a) solid (b) broth static (c) broth shaking

Figure S7. UPLC-DAD chromatograms of MATRIX extracts of CMB-M0339 showing the production of **1-3** (highlighted in red) in different media and culture conditions; (a) D400, (b) GY, (c) IM ,(d) M1, (e) M2, (f) SGG, (g) YEME, (h) YES, (i) 333, (j) PD, (k) SD, (i) Liquid shaking, (ii) Liquid static, (iii) solid, (iv) Media blank, * Internal calibrant

Table S1. Composition of media used for cultivation profiling	T	able	S1 .	Com	position	of	media	used	for	cultivation	profili	ng
---	---	------	-------------	-----	----------	----	-------	------	-----	-------------	---------	----

Meanum	Composition (per Litre)
M1	Peptone (2.0 g), yeast extract (4.0 g), starch (10.0 g), artificial sea salt (33.0 g), agar (18.0 g)
M2	Mannitol (40.0 g), maltose (40.0 g), yeast extract (10.0 g), K_2HPO_4 (2.0 g), MgSO ₄ .7H ₂ O (0.5 g), FeSO ₄ .7H ₂ O (0.01 g), agar (18.0 g),
IM	Yeast extract (Difco) (4.0 g), malt extract (Difco) (10.0 g), glucose (country brewers) (4.0 g), mannitol (Amyl) 40.0 g, agar (Amyl) (18.0 g)
Modified YEME	Bacto peptone (Difco) (5.0 g), yeast extract (Difco) (3.0 g), Oxoin malt extract (3.0 g), glucose (10.0 g), sucrose (170.0 g), agar (18.0 g)
GY	Yeast extract (Difco) (4.0 g), malt extract (Difco) (10.0 g), glucose (country brewers) (4.0 g), CaCO ₃ (Univar Ajax) (2.0 g), soluble starch (Difco) (20.0 g), agar (Amyl) (18.0 g)
YES	Sucrose (150 g), yeast extract (20 g), MgSO ₄ .7H ₂ O (0.5 g), ZnSO ₄ .7H ₂ O (0.01 g), CuSO ₄ .5H ₂ O (0.005 g), agar (18.0 g)
D400	Glucose (10.0 g), malt extract (3.0 g), peptone (3.0 g), soluble starch (20.0 g), yeast extract (5.0 g), $CaCO_3$ (3.0 g), agar (18.0 g).
SGG	Glucose (10.0 g), glycerol (10.0 g), cornsteep powder (2.5 g), peptone (5.0 g), soluble starch 10.0 g), yeast extract (2.0 g), $CaCO_3$ (3.0 g), $NaCl$ (1.0 g), agar (18.0 g).
333	Glucose (5.0 g), peptone (3.0 g), soluble starch (10.0 g), yeast extract (3.0 g), CaCO ₃ (2.0 g), agar (18.0 g).
PD	Potato extract (4.0 g), dextrose (20.0 g), agar (18 g)
SD	Peptic digest of animal tissue (5.0 g), pancreatic digest of casein (5.0 g), dextrose (40.0 g), agar (18 g)

Figure S8. Isolation scheme of noonindoles G – L (**7-12**) from CMB-M0339. (a) Trituration [hexane (-1), DCM (-2), MeOH (-3)]. (b) Preparative reversed phase HPLC (Phenomenex Luna-C₈ 10 µm, 21.2 × 250 mm column, with gradient elution at 20 mL/min over 20 min from 90% H₂O/MeCN to 100% MeCN with constant 0.1% TFA/MeCN modifier). (c) Column chromatography: Sep-Pak (Agilent Bond Elut C₁₈ column, 5 g) gradient elution from 90% H₂O/MeCN to 100% MeCN to 100% MeCN (d) Semi preparative HPLC (Zorbax C₁₈ 5µm column, 9.4 × 250 mm, 3 mL/min isocratic elution of 85% MeCN/H₂O over 15 min with constant 0.1% TFA modifier. (e) Semi preparative HPLC (Zorbax C₁₈ 5µm column, 9.4 × 250 mm, 3 mL/min isocratic elution of 45% MeCN/H₂O over 35 min with constant 0.1% TFA modifier. (f) Semi preparative HPLC (Zorbax C₁₈ 5µm column, 9.4 × 250 mm, 3 mL/min isocratic elution of 45% MeCN/H₂O over 25 min with constant 0.1% TFA modifier. (f) Semi preparative HPLC (Zorbax C₁₈ 5µm column, 9.4 × 250 mm, 3 mL/min isocratic elution of 45% MeCN/H₂O over 35 min with constant 0.1% TFA modifier. (f) Semi preparative HPLC (Zorbax C₁₈ 5µm column, 9.4 × 250 mm, 3 mL/min isocratic elution of 45% MeCN/H₂O over 25 min with constant 0.1% TFA modifier. (f) Semi preparative HPLC (Zorbax C₁₈ 5µm column, 9.4 × 250 mm, 3 mL/min isocratic elution of 45% MeCN/H₂O over 25 min with constant 0.1% TFA modifier.

3 Spectroscopic characterization of metabolites G-L (7-12)

3.1 Noonindole G (7)

Table S2. 1D and 2D NMR	(600 MHz,	methanol- d_4)) data for n	oonindole G	(7)
					· ·	

Pos.	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	$\delta_{ m C}$	COSY	¹ H- ¹³ C HMBC	ROESY
1-NH	-	-	-	-	-
2	-	151.2	-	-	-
3	-	51.8	-	-	-
4	-	50.6 ^a	-	-	-
5	a 2.12, ddd (13.8, 13.8, 3.7)	33.0	6 <i>a</i> , 6 <i>b</i> , 5 <i>b</i>	13, 4-Me	-
	<i>b</i> 2.04, m		5a, 6b	6, 7, 13	-
6	<i>a</i> 2.31, m	31.1	6 <i>b</i> , 7	4/16, 7	-
	<i>b</i> 1.93, ddd (<i>13.8, 13.5, 4.4</i>)		5b, 6a, 7	5	-
7	4.41, dd (<i>7.9</i> , <i>7.9</i>)	77.0	6 <i>a</i> , 6 <i>b</i>	6, 11	9
9	4.01, br s	85.0	-	7, 10, 25, 26, 27	7
10	-	196.5	-	-	-
11	5.77, br s	122.8	-	7, 9, 13	-
12	-	169.2	-		-
13	2.58, br d (11.6)	43.8	14 <i>a</i> , 14 <i>b</i>	4/16, 11, 12, 4-Me	3-Me
14	<i>a</i> 1.71, d (<i>13.0</i>)	27.0	14 <i>b</i> , 13	13, 15, 4/16	-
	<i>b</i> 1.60, dd (<i>13.0, 4.7</i>)		15 <i>a</i> , 15 <i>b</i> , 14 <i>a</i> , 13	13, 4/16	-
15	<i>a</i> 1.83, m	25.4	15 <i>b</i> , 16, 14 <i>a</i> ,14 <i>b</i>	3, 13, 14	-
	<i>b</i> 1.76, dd (<i>13.0, 3.4</i>)		15 <i>a</i> , 14 <i>a</i> , 14 <i>b</i> , 16	4/16	-
16	2.84, m	50.6 ^a	17 <i>a</i> , 17 <i>b</i> , 15 <i>b</i>	-	4-Me
17	<i>a</i> 2.68, dd (<i>12.6</i> , <i>6.4</i>)	28.2	17 <i>b</i> , 16	2, 3, 18	-
	<i>b</i> 2.38, dd (<i>12.6</i> , <i>10.8</i>)		17 <i>a</i> , 16	2, 4/16, 18	-
18	-	118.2	-	-	-
19	-	126.3	-	-	-
20	7.30, d (8.3)	119.0	21	22, 24	-
21	6.93, dd (8.3, 7.3)	120.0	20, 22	19, 23	-
22	6.97, dd (8.2, 7.3)	121.1	21, 23	20, 24	-
23	7.28, d (8.2)	112.8	22	19, 21	-
24	-	142.2	-	-	-
25	-	79.3	-	-	-
26	1.41, s	21.5	-	9, 25, 27	-
27	1.48, s	26.1	-	9, 25, 26	-
ľ	4.96, br s	97.0	2'	2', 25	5', 3'
2'	3.81, d (<i>3.0</i>)	73.7	3'	3', 4'	-
3'	3.43, dd (9.4, 3.0)	75.7	2', 4'	4'	1', 5'
4'	3.57, t (9.4)	68.5	3', 5'	6', 5'	-
5'	3.17, ddd (9.4, 5.6, 2.1)	78.1	6' <i>b</i> , 4'	-	1', 3'
6'	<i>a</i> 3.84, dd (<i>11.7</i> , <i>2.1</i>)	63.0	5', 6' <i>b</i>	4'	-
	b 3.69, dd (11.7, 5.6)		5', 6' <i>a</i>	4', 5'	-
3-Me	1.09, s	14.9	-	2, 3, 4/16	13
4-Me	0.99, s	16.4	-	3, 4/16, 5, 13	16

^a Resonances with the same superscript within a column are overlapping and assignments may be interchanged

Figure S10. ¹³C NMR (150 MHz, methanol- d_4) spectrum of noonindole G (7)

Figure S12. COSY (methanol- d_4) spectrum of noonindole G (7)

Figure S14. ROESY (methanol- d_4) spectrum of noonindole G (7)

Figure S15. HRMS spectrum of noonindole G (7)

3.2 Noonindole H (8)

Table S3. 1D and 2D NMR (600 MHz, methanol- d_4) data for noonindole H (8)

Pos.	$\delta_{\mathrm{H},\mathrm{mult.}}$ (J in Hz)	$\delta_{ m C}$	COSY	¹ H- ¹³ C HMBC	ROESY
1-NH	_	-	-	-	-
2	-	151.1	-	-	-
3	-	51.8	-	-	-
4	-	44.0	-	-	-
5	<i>a</i> 2.27, m	32.0	6, 5 <i>b</i>	7, 13, 4-Me	-
	<i>b</i> 1.93, m		6, 5 <i>a</i>	7, 13, 4-Me	
6	2.17, m	37.2	5a, 5b	4, 7	-
7	-	95.5	-	-	-
9	4.50, s	78.6	-	7, 10, 25, 26, 27	-
10	-	197.1	-	-	-
11	5.68, br s	123.3	-	7, 9, 13	-
12	-	166.3	-	-	-
13	2.83, dd (12.8, 2.4)	43.1	14 <i>a</i> , 14 <i>b</i>	12	3-Me
14	<i>a</i> 1.67, m	26.9	13, 14 <i>b</i> , 15 <i>b</i>	-	-
	<i>b</i> 1.57, dd (<i>12.8, 4.3</i>)		15 <i>a</i> , 15 <i>b</i> , 14 <i>a</i> , 13	-	-
15	<i>a</i> 1.84, m	25.5	14 <i>a</i> ,14 <i>b</i> , 15 <i>b</i> , 16	13	-
	<i>b</i> 1.76, dd (<i>12.8, 3.4</i>)		15 <i>a</i> , 14 <i>a</i> ,14 <i>b</i> ,16	-	-
16	2.85, m	50.8	17a, 17b, 15a	-	4-Me
17	<i>a</i> 2.68, dd (<i>13.3, 6.5</i>)	28.3	17 <i>b</i> , 16	2, 3, 18	-
	<i>b</i> 2.38, dd (<i>13.3</i> , <i>11.0</i>)		17 <i>a</i> , 16	18	-
18	-	118.2	-	-	-
19	-	126.3	-	-	-
20	7.30, d (<i>8</i> . <i>1</i>)	118.9	21	18, 22, 24	-
21	6.93, dd (8.1, 7.3)	120.6	20, 22	19, 23	-
22	6.97, dd (8.1, 7.3)	121.1	21, 23	20, 24	-
23	7.28, d (<i>8</i> . <i>1</i>)	112.8	22	19, 21	-
24	-	142.3	-	-	-
25	-	79.3	-	-	-
26	1.31, s	22.3	-	9, 25, 27	-
27	1.49, s	25.9	-	9, 25, 26	-
1'	4.94, s	96.9	2'	25, 2'	5', 3'
2'	3.85, d (<i>3.2</i>)	73.7	1', 3'	3', 4'	-
3'	3.44, dd (9.4, 3.2)	75.7	2', 4'	4'	1'
4'	3.54, t (9.4)	68.5	3', 5'	3', 5', 6'	-
5′	3.18, m	78.1	6' a, 6'b, 4'	-	1′
6'	a 3.84, dd (11.8, 1.6)	63.1	5', 6'b	-	-
	b 3.68, dd (11.8, 5.9)		5', 6'a	5'	-
3-Me	1.10, s	15.1	-	2, 3, 4, 16	13
4-Me	0.99, s	15.8	-	3, 4, 5, 13	16

Figure S17. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum of noonindole H (8)

Figure S19. COSY (methanol- d_4) spectrum of noonindole H (8)

Figure S21. ROESY (methanol- d_4) spectrum of noonindole H (8)

F2 [ppm]

Figure S22. HRMS spectrum of noonindole H (8)

3.3 Noonindole I (9)

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

a 1.98, d (13.2)

b 1.96^a, m

a 2.12, m

b 1.95^a, m

4.01, m

3.39, br s

a 1.65, m

a 1.79, m

2.82, m

7.29, d (7.1)

7.27, d (7.0)

-

_

1.45, s

1.39, s

6.92, dd (8.0, 7.1)

6.95, dd (8.0, 7.0)

4.08, br d (6.0)

5.55, br d (6.0)

2.28, br d (12.8)

b 1.57, dd (12.3, 4.7)

a 2.65, dd (13.5, 6.3)

b 2.36, dd (*13.5*, *11.3*)

b 1.72, ddd (15.5, 12.3, 3.1)

I able S	4. ID and $2D$ NMR	(600 MHZ, metr	ianoi- <i>a</i> 4) da	la for noonindole I (9)		
Pos.	$\delta_{ m H,}$ mult. (J in Hz)	$\delta_{ m C}$	COSY	¹ H- ¹³ C HMBC	ROESY	
1-NH	-	-	-	-	-	
2	-	151.9	-	-	-	
3	-	51.6	-	-	-	
4	-	42.2	-	-	-	

_

5ª, 7

6a

10

10

9,11

14*a*, 14*b*

15*b*, 16

17*b*, 16

17a, 16

-

_

21

22

_

_

_

20, 22

21, 23

13, 14b, 15a, 15b

15*a*, 14*a*, 14*b*, 16

17a, 17b, 15b

15*b*, 14*a*, 13

4, 5, 7, 12

6, 11, 12 7, 10, 25, 26

9, 11, 12

7, 9, 13

15, 16

15, 13

14, 16

2, 3, 18

18, 22, 24

19, 23

20, 24

19, 21

9, 25, 27

9, 25, 26

3

16

-

_

13, 14, 16

4, 11, 12, 14, 4-Me

-9

7

11,9

3-Me

4-Me

_

_

-

_

Table S4. 1D and 2D NMR (600	MHz, methanol- d_4) data for noonindole I (9)
------------------------------	--

33.3

30.5

78.5

84.2

64.4

120.2

146.6

42.6

27.4

25.8

50.8

28.3

118.1

126.4

118.9

119.8

120.8

112.8

142.1

80.6

23.6

24.5

1'	4.99, br s	96.6	2'	2', 25	5', 3'	
2'	3.78, d (<i>3</i> . <i>1</i>)	74.1	1', 3'	1', 3', 4'	-	
3'	3.46, dd (9.6, 3.1)	75.7	2', 4'	4'	1', 5'	
4′	3.57, dd (9.7, 9.6)	68.6	3', 5'	5', 3', 6'	-	
5'	3.20, ddd (9.7, 5.8, 2.0)	78.1	6' <i>b</i> , 4'	1', 4', 6'	1', 3'	
6'	<i>a</i> 3.84, dd (<i>11.9</i> , <i>2.0</i>)	63.0	5', 6' b	4', 5'	-	
	<i>b</i> 3.70, dd (<i>11.9</i> , <i>5.8</i>)		5', 6' a	4', 5'	-	
3-Me	1.05, s	14.9	-	2, 3, 4, 16	13	
4-Me	0.99, s	16.1	-	3, 4, 5, 13	16	

^a Resonances with the same superscript within a column are overlapping and assignments may be interchanged

Figure S23. ¹H NMR (600 MHz, methanol-*d*₄) spectrum of noonindole I (9)

Figure S26. COSY (methanol-d₄) spectrum of noonindole I (9)

Figure S28. ROESY (methanol-*d*₄) spectrum of noonindole I (9)

Figure S29. HRMS spectrum of noonindole I (9)

3.4 Noonindole J (10)

Pos.	$\delta_{ m H,}$ mult. (J in Hz)	$\delta_{ m C}$	COSY	¹ H- ¹³ C HMBC	ROESY
1-NH	-	-	-	-	-
2	-	152.5	-	-	-
3	-	54.3	-	-	-
4	-	41.2	-	-	-
5	1.92, m	34.3	$6a, 6b^{a}$	4, 7, 13, 4-Me	-
6	<i>a</i> 1.82, dd (<i>12.7, 3.8</i>) <i>b</i> 1.67 ^a , m	26.0	5a, 5b, 7	5, 4	-
7	3.06, dd (11.7, 3.8)	87.6	$6a, 6b^{a}$	6, 12-Me	9
9	3.38, dd (12.0, 2.6)	86.5	$10b^{b}$	25	7
10	<i>a</i> 1.65 ^a , m	23.5	-	-	-
	<i>b</i> 1.55 ^b , m		-	-	-
11	<i>a</i> 1.85, m	39.1	11 <i>b</i>	7,9	-
	b 1.19, dd (15.3, 12.7, 4.6)		$11a, 10b^{b}$	12-Me	-
12	-	37.8	-		-
13	1.55 ^b , m	48.0	-	-	-
14	a 1.72, dd (12.6, 2.6)	23.2	14 <i>b</i>	4, 16	-
	b 1.43, ddd (16.7, 12.6, 4.2)		15 <i>a</i> , 14 <i>a</i> , 13 ^b	13	-
15	<i>a</i> 1.78, br d (<i>12.6</i>)	26.6	$15b^{a}, 14b, 16$	13	-
	<i>b</i> 1.63 ^a , m		-	-	-
16	2.77, m	50.3	17 <i>a</i> , 17 <i>b</i> , 15 <i>b</i> ^a	-	4-Me
17	<i>a</i> 2.61, dd (<i>13.0</i> , <i>6.5</i>)	28.4	17 <i>b</i> , 16	2, 3, 16, 18	-
	b 2.28, dd (13.0, 10.8)		17 <i>a</i> , 16	2, 16, 18	-
18	-	118.2	-	-	-
19	-	126.5	-	-	-
20	7.27°, d (7.4)	118.8	-	-	-
21	6.91, dt (7.4, 1.0)	119.8	20°, 22	19, 23	-
22	6.95, dt (7.4, 1.0)	120.8	21, 23°	20, 24	-
23	7.27°, d (7.4)	112.8	-	-	-
24	-	142.2	-	-	-
25	-	80.3	-	-	-
26	1.33, s	21.5	-	9, 25, 27	-
27	1.24, s	24.5	-	9, 25, 26	-
1'	4.91, br s	96.8	2'	2', 5', 25	5', 3'
2'	3.79, d (<i>3</i> . <i>1</i>)	73.9	1', 3'	3', 4'	-
3'	3.44, dd (9.5, 3.1)	75.7	2', 4'	4'	1', 5'
4′	3.56, t (9.5)	68.7	3', 5'	6', 3', 5'	-
5'	3.18, ddd (9.5, 5.6, 2.3)	78.0	6' a, 6' b, 4'	-	1', 3'
6'	a 3.83, dd (11.7, 2.3)	63.1	5', 6' b	4'	-
-	b 3.69, dd (11.7, 5.6)		5', 6' a	4', 5'	-
3-Me	1.03. s	15.0	-	2, 3, 4, 16	-
4-Me	1.15, s	20.3	-	3, 4, 5, 13	16, 12-Me
	·				*

12-Me0.92, s13.4-7, 11, 12, 134-Mea-c Resonances with the same superscript within a column are overlapping and assignments may be interchanged

Figure S31. ¹³C NMR (150 MHz, methanol- d_4) spectrum of noonindole J (10)

Figure S33. COSY (methanol- d_4) spectrum of noonindole J (10)

Figure S36. HRMS spectrum of noonindole J (10)

3.5 Noonindole K (11)

Table So. 1D and 2D INVIK (000 IVIEZ, methanol- a_4) data for noomindole K (1	Table S6.	1D and 2D NMR	(600 MHz, methanol- d_4) data for	noonindole K	(11)
---	-----------	---------------	---------------------------	------------	--------------	------

Pos.	$\delta_{\rm H,}$ mult. (J in Hz)	$\delta_{ m C}$	COSY	¹ H- ¹³ C HMBC	ROESY	
1-NH	-	-	-	-	-	
2	-	152.4	-	-	-	
3	-	54.6	-	-	-	
4	-	41.3	-	-	-	
5	1.93, dd (<i>13.2, 3.7</i>)	34.3	6 <i>b</i>	6, 7, 13, 4-Me	-	
6	<i>a</i> 1.74 ^a , m	25.8	-	-	-	
	<i>b</i> 1.64, m		5, 7	-	-	
7	3.15, dd (<i>12.6, 2.9</i>)	87.3	6 <i>b</i>	12- <u>C</u> H ₂ OH	9	
9	3.42, m	86.6	10 <i>b</i>	25, 11	7	
10	<i>a</i> 1.74ª, m	23.5	-	-	-	
	<i>b</i> 1.57, m		11 <i>a</i> , 11 <i>b</i> , 9	12	-	
11	<i>a</i> 2.46, br d (<i>13.0</i>)	33.5	11 <i>b</i> , 10 <i>b</i>	9, 12	-	
	<i>b</i> 1.00, m		11 <i>a</i> , 10 <i>b</i>	12, 12- <u>C</u> H ₂ OH	-	
12	-	41.8	-		-	
13	1.54 ^b , m	48.6	-	-	-	
14	<i>a</i> 1.83, m	25.2	$14b, 15b^{\rm b}$	4, 13, 15, 16	-	
	<i>b</i> 1.77, m		14 <i>a</i> , 15 <i>b</i> ^b	13, 16	-	
15	<i>a</i> 1.74ª, m	27.1	-	-	-	
	<i>b</i> 1.55 ^b , m		-	-	-	
16	2.77, m	50.6	17 <i>a</i> , 17 <i>b</i> , 15 <i>b</i> ^b	4	-	
17	<i>a</i> 2.61, dd (<i>13.4</i> , <i>6.5</i>)	28.5	17 <i>b</i> , 16	2, 3, 16, 18	-	
	b 2.28, dd (13.4, 10.5)		17 <i>a</i> , 16	2, 16, 18	-	
18	-	118.3	-	-	-	
19	-	126.4	-	-	-	
20	7.28°, d (8.0)	118.8	-	-	-	
21	6.91, t (8.0)	119.8	20°, 22	19, 23	-	
22	6.95, t (8.0)	120.8	21, 23°	20, 24	-	
23	7.28°, d (8.0)	112.7	-	-	-	
24	-	142.3	-	-	-	
25	-	80.5	-	-	-	
26	1.32, s	21.7	-	9, 25, 27	-	
27	1.26 ^d , s	24.5	-	-	-	
1'	4.91, br s	96.8	2'	2', 25	5', 3'	
2'	3.79, d (<i>3</i> . <i>1</i>)	73.9	1', 3'	3', 4'	-	
3'	3.43, m	75.7	2', 4'	4'	1', 5'	
4'	3.56, t (9.5)	68.7	3'. 5'	6', 3', 5'	-	
5'	3.18. m	78.0	6' h 4'	-	1' 3'	
6'	a 3.83. dd (11 7. 2.3)	63.1	5' 6' b	4'	-	
^v	b 3.69. dd (11.7, 5.6)	00.1	5', 6' a	4' 5'	-	
3-Me	1.03 s	15.1	5,0 u	7,5 2 3 4 16	_	
	1.03, 5	20.2	-	2, 3, 4, 10	-	
12_CH_OU	a = 1.20, s	20.2 61.0	- 12_CH_OH_a	- 11 13	-	
12-С <u>п</u> 2ОП	a = 1.00, d (12.0) b = 3.03, d (12.0)	61.0	12-С <u>п</u> 2Оп- <i>и</i> 12-СН2ОЦ <i>k</i>	11, 13 11 12 7	-	
	<i>u</i> 5.55, u (12.0)	01.0	12-C <u>H</u> 2OH-0	11, 12, /	-	

^{a-d} Resonances with the same superscript within a column are overlapping and assignments may be interchanged

Figure S38. ¹³C NMR (150 MHz, methanol-*d*₄) spectrum of noonindole K (11)

Figure S40. COSY (methanol-d4) spectrum of noonindole K (11)

Figure S42. ROESY (methanol- d_4) spectrum of noonindole K (11)

Figure S43. HRMS spectrum of noonindole K (11)

3.6 Noonindole L (12)

Table S7. 1D and 2D NMR (600 MHz, methanol- d_4) data for noonindole L (12)

Pos.	$\delta_{ m H,}$ mult. (J in Hz)	$\delta_{ m C}$	COSY	¹ H- ¹³ C HMBC	ROESY
1-NH	-	-	-	-	-
2	-	151.7	-	-	-
3	-	53.3	-	-	-
4	-	50.3	-	-	-
5	2.02, m	33.5	$6a^{\mathrm{a}}$	4, 7, 13, 4-Me	-
6	<i>a</i> 2.29ª, m	26.1	-	-	-
	<i>b</i> 1.97, m		6 <i>a</i> ^a , 7	4, 7	-
7	3.38, dd (<i>12.6</i> , <i>4.5</i>)	85.3	$6a^{\rm a}, 6b$	6, 9, 11, 12- <u>C</u> HO	-
9	3.44 ^b , m	86.1	-	-	-
10	<i>a</i> 1.65, dd (<i>13.3, 3.7</i>)	24.8	$10b^{c}, 11b^{c}, 11a, 9^{b}$	12	-
	<i>b</i> 1.25°, m		-	-	-
11	<i>a</i> 2.44, m	34.9	$10a, 10b^{\circ}, 11b^{\circ}$	7, 9, 10, 12	-
	<i>b</i> 1.25°, m		-	-	-
12	-	52.1	-	-	-
13	1.81, dd (<i>13.0, 3.1</i>)	49.0	14 <i>a</i> , 14 <i>b</i>	4, 12, 14, 4-Me, 12- <u>C</u> HO	3-Me
14	<i>a</i> 1.89, m	23.7	14 <i>b</i> , 13	15, 16	-
	<i>b</i> 1.51, dd (<i>13.0, 4.5</i>)		15 <i>a</i> , 15 <i>b</i> , 14 <i>a</i> , 13	13	-
15	<i>a</i> 1.76, m	26.2	14 <i>a</i> ,14 <i>b</i> , 15 <i>b</i> , 16	3, 13, 14	-
	<i>b</i> 1.62, dd (<i>13.0, 3.3</i>)		15 <i>a</i> , 14 <i>a</i> ,14 <i>b</i> ,16	-	-
16	2.68, m	50.7	$17a, 17b^{a}, 15a, 15b$	17, 18	4-Me
17	<i>a</i> 2.61, dd (<i>13.0</i> , <i>6.4</i>)	28.3	$16, 17b^{a}$	2, 3, 16, 18	-
	<i>b</i> 2.29ª, m		-	-	-
18	-	118.2	-	-	-
19	-	126.3	-	-	-
20	7.27^{a} , br d (8.0)	118.9	-	-	-
21	6.91, dd (8.0, 7.3)	119.9	20 ^a , 22	19, 23	-
22	6.95, dd (8.0, 7.3)	121.0	$21, 23^{d}$	20, 24	-
23	7.27^{a} , br d (8.0)	112.8	-	-	-
24	-	142.2	-	-	-
25	-	80.0	-	-	-
26	1.29, s	21.9	-	9, 25, 27	-
27	1.20, \$ 4.90, 1 m	23.9	-	9, 25, 26	-
I'	4.89, br s	96.6	2	2,25	2
2'	3.77, d (3.7)	74.1	1', 3'	1', 3', 4'	-
3'	3.44°, m	75.8	-	-	-
4'	3.55, t (9.4)	68.7	3', 5'	6', 3', 5'	-
5'	3.17, m	78.2	6' <i>b</i> , 4'	1', 4'	1'
6'	a 3.83, dd (11.8, 1.9)	63.1	5', 6'b	4'	-
	<i>b</i> 3.69, dd (<i>11.8</i> , 5.4)		5', 6'a	4', 5'	-
3-Me	1.03, s	15.1	-	2, 3, 4, 16	13
4-Me	0.93, s	19.9	-	3, 4, 5, 13	16, 12-C <u>H</u> O
12-С <u>Н</u> О	10.16, s	210.2	-	12	4-Me

a-d Resonances with the same superscript within a column are overlapping and assignments may be interchanged

Figure S49. ROESY (methanol-d₄) spectrum of noonindole L (12)

Figure S50. HRMS spectrum of noonindole L (12)

4 Grain based MATRIX

Figure S51. CMB-M0339 growing in grain MATRIX

Figure S52. UPLC-DAD chromatograms of MATRIX extracts of CMB-M0339 cultivated in grain MATRIX, (a) Mung beans with shell, (b) Cous Cous, (c) Barley, (d) Jasmine rice, (e) Black rice, (f) Red rice, (g) Rice flour, (h) Noodles, (i) Semolina, (j) Lentils, (k) Black gram without shell, (l) Basmati rice, (i) Extract from CMB-M0339, (ii) Media blank, * Internal calibrant

Grains	Composition (per well)
Red rice	Red rice (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Black rice	Black rice (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Jasmine rice	Jasmine rice (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Basmati rice	Basmati rice (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Barley	Barley (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Cous cous	Cous cous (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium
(Wheat)	glutamate (0.0015 g) and 1.5 mL distilled water
Noodles	Noodles (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Mung bean with shell	Mung bean (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Black gram without shell	Black gram (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Lentils	Lentils (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water
Semolina	Semolina (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium
(Wheat)	glutamate (0.0015 g) and 1.5 mL distilled water
Rice flour	Rice flour (1.0 g), peptone (0.0045 g), yeast extract (0.0045 g), monosodium glutamate (0.0015 g) and 1.5 mL distilled water

 Table S8. Composition of media used for grain-based MATRIX

Figure S53. UPLC-DAD chromatograms of CMB-M0339 cultivated in D400 agar supplemented with D-mannose (4, 2, 1 mg/mL, b-d, respectively) and D-glucosamine (4, 2, 1 mg/mL, e-g, respectively) (a) Control. (Production of **1-3** are highlighted in red). * Internal calibrant

Figure S54. GNPS molecular network of CMB-M0339 cultivated in D400 agar supplemented with D-mannose. Expanded cluster showing the presence of 9 and 12

Figure S55. GNPS molecular network of CMB-M0339 cultivated in D400 agar supplemented with D-glucosamine. Expanded cluster showing the presence of 9 and 12

Figure S56.Single ion extraction of CMB-M0339 fresh crude extract to show the presence of 1-12

Figure S57. Antimicrobial activity of metabolites 7-12 against S. aureus, E. coli, B. subtilis and C. albicans

Figure S58. Cytotoxicity of metabolites 7-12 against human colon cancer (SW620) and human lung carcinoma (NCI-H460) cell lines

6 References

 Yang, Z. G., N.; Friday, A. Comparison of Models for Nucleotide Substitution Used in Maximum-Likelihood Phylogenetic Estimation. *Mol. Biol. Evol.* 1994, *11* (2), 316-324.
 Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 2004, *5*.

3. Okonechnikov, K. G., O.; Fursov, M. Unipro UGENE: a unified bioinformatics toolkit. *Bioinformatics* **2012**, *28* (8), 1166-1167.